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ON THE FEASIBILITY OF STABILIZING STEADY MOTIONS OF SYSTEMS WITH 
PSEUDO-IGNORABLE COORDINATES* 

V.A. SAMSONOV 

A class of systems with pseudo-ignorable coordinates is introduced. Set Pofpossible 
steady motions is described, and the problem of steady motion stabilization is qual- 
itatively analyzed. A similar problem was considered in /1,2/ from the point of 
view of the general theory of controlability. Information on set P, an instrument 
of invariant manifolds of linear systems, and the Kelvin-Chetaev theorems provide 
in a number Of cases the means for a simple and effective solution of this problem. 

1. The set of steady motions. Let among the generalized coordinates $(i=l,..., n) 
of a mechanical system with steady holonomic constraints there be coordinates qj(i = r+l,..., 
n; r(n) which do not explicitly appear in the expression for the system kinetic energy T. 
The forces acting on the system are assumed independent of such coordinates which are called 
below pseudo-ignorsble. The remaining pi(i = l,..., r) are position coordinates. We shall use 
matrix notation, viz. q for a column matrix consisting of position coordinates, and 4, (r) for 
column matrices of position and pseudo-ignorable velocities. 

We assume the input system to be free of gyroscopic constraints, i.e. 

2T = q’TA (q) q’ i- o=B (q) 0 

where A, B arepositive definite matrices whose coefficients are independent of position co- 
ordinates. 

Let us further assume that the generalized forces that correspond to positioncoordinates 
are specified and represent the sum of potential and dissipative forces 

Qi =dUi&i $- Qid 
The generalized forces Fj which correspond to pseudo-ignorable coordinates are taken as 

the control forces subject to selection. 
Let us assume that under certain initial conditions the following stabilized motions of 

the system are possible: 
q(t) = Q" = const, o(t) = o0 = const 

For the determination of qo, a,, we have the equations 

_?%-~&$&,,=O, 
'4i 2 aqi 

Fj=O (1.1) 

One of the aims of the selection of control forces Fj is generallly to ensure the fulfil- 
lment of conditions of existence of steady motions at certain specified pseudo-ignorable vel- 
ocities. This is evidently not possible for all systems, but only for those for which Eqs. 
(1.1) have at least one solution for q at a given 00. In applied problems o0 is, as a rule, 

assumed to belong to some domain 61, of space fl= (0). Any point of the domain 51, can be 
chosen as representing the working mode. 

The above assumptions are sufficient for analyzing Eqs.(l.l) as equations in p with para- 
meters 0. In an n-dimensional space of variables 4, 61 these equations define the set p Of 

possible steady motions of the system. Generally this set consists of a denumerable number 
of components P, that can be represented in the form of single-valued functions 

q = fe(0), e = 1, 2,... 

with the domain 9, of their determination is of dimension n--r or smaller. Only those com- 

ponents of set P for which dim& = n--r are taken into account in the subsequent analysis- 
Many objects have components of set P for which functions f, are independent of com- 

ponents of vector 0. This happens when the following equalities are satisfied on the hyper- 

plane 4 = go: 
____.-. 
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dUJ&, = dBkj/~q~ = 0 (1.2) 

where Bkj are the coefficients of matrix B. We call such steady motions trivial, and the 

remaining, significant. The domain of determination of the component of set P, which con- 
sists of stable trivial motions, obviously coincide with the whole space 8. 

Individual components of set P may intersect at points of some set of smaller dimension 
L. Branching of solutions of the system of Eqs.(l.l) occurs at points of set L, and its 

Jacobian d&W must necessarily vanish. A large number of mechanical system hastheproperty 
that the condition of the Jacobian becoming zero is satisfied only at branching points, and 
not at any other points of set P. This enables us to introduce in the analysis some sup- 
plementary characteristic. 

We denote by v the number of negative eigenvalues of matrix W. Let us assume that the 
component P, of set Pis separated by "line" L in two (or more) coherent parts P, and Pa. 
Since at least one of matrix W eigenvalues vanishes on L, it well may prove that the quant- 
ity y assumes different values in parts Pel and P,,, while remaining the same at all points 
of one part. It is therefore advisable to distinguish the component of set P not only by 
the criterion of function f, single-valuedness but, also, by the respective valueofparameter 
v which will be called below the index. (The introduced here concept of the index is an ex- 
tension of that of Poincarg's degree of instability usedinthe case of special selection of 
control forces.) We call a connected single-valued component of set Pthe leaf P,, if atall 
points of that component the index Y is constant, and none of its internal points are branch- 
ing points of solution of Eqs.(l.l). 

The set of leaves P, can be considered to be a geometrical characteristic of the input 
system. The definition of this image must contain a list of leaves with indicationofrespect- 
ive indices. For any selection of control forces Fi certain points of set P correspond to 
possible steady motions. It will subsequently become clear that the separation of the set in 
leaves is useful for the qualitative investigation of the stabilization problem and for the 
construction of stabilizing actions. 

Wote also that by far not all points of set P at which condition detW= 0 aresatisfied 
(singular points) have to be branching points. The question of the number of solutions in 
the singular points neighborhood requires further analysis (see, e.g., /3/f. 

Example 1. Let us describe the set of possible stable motions of a physical pendulum 
whose horizontal swinging axis 00' can turn about the vertical axis NN'. Some interesting 
properties of motions of such system were noted in /4,5/. The system has two degrees of free- 
dom: turning of the swing axis by angle rl, (pseudo-ignorable coordinate) around of axis NN' 
and the turn of the pendulum body about the swing axis by angle 8 (position coordinate). For 
simplicity we assume that axes 00' and NN' intersect at point 0, and that axes oo'and OC(C 
is the body center of mass) are the principal axes of the bcdy ellipsoid of inertia relative 
to point 0. On these assumptions 

2T = ll@'p + (lasina@+ I, COS*~)W* 
U=mgacos6, a=lOG[ 

where o=tp'* m is the mass, and Ii, Ia, I, the respective moments of inertia of the body. 
The system of Eqs.fl.1) is transformed into the single equation 

mgasin6-((I,-If,)~Bsin~cos6=0 

which obviously has branches of trivial solutions 

6k = al;, k = O,+ 1, . . I 

and branches of significant solutions 

which intersect with respective branch of trivial solutions when o=e_where mgo= o,*[I,-1~1. 
We restrict our considerations to that part of set P for which O<tk< X. It contains 

four leaves. When i,>I, the set of trivial motions 6= 0 consisits of two leaves: P,(O< 
at<@*) and Pn(a> o*) with indices Y~=O and v%= i, respectively. There is also leaf PII of 
significant motions for 632 o., with index v,=O, and leaf P, of trivial motions 6=n with 
index y,= i. 

When I,<I, we have leaf P, of motions 6=0&= O), motions 6= n which form two leaves 
Pn;(w< a*,~~= i) and P,(o> o.,v,= 0). Leaf ps of significant motion has vI= i as the index. 

The control force F is provided by the moment generated by the mechanism that turns the 
axis 00'. 

Example 2. Let US consider a heavy gyroscope in a perfect universal joint with a 
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vertical axis of rotation of the external gimbal ring /6,7/. In that case Eq. (1.1) 1-c 02 t.h;: 
form 

[(Is* - Z.&&~cos6+ z,o*w, + mga) sin6 = 0 (1.J) 
19, = I, + J*, I,, = 1, + -is 

where the pseudo-ignorable velocities oQ, W, are angular velocities of the gyrostat proper rot- 
ation and precession, respectively, the position coordinate 6(0<;6<x) is the nutation angle, 
1~18, Jm Ja are, respectively, the moments of inertia of the rotor and inner gimbal ring, n 
is the gyroscope mass, and a the distance between the gyroscope center of mass and the sus- 
pension center. 

Equation (1.3) has evidently two trivial solutions: i),= 0 and 1p, =s. When Ist J:Iz* there 
are moreover in the parameter plane % "II two domains s2, and Qs whose points correspond to 
supplementary solutions of Eq.(l.3) 

The surfaces QY~,~(w~,o~) intersect the plane $==O along the branches of the hyperbola 

J%a + I,e,o, + (I,, -Ig*)%*= 0 

and the plane fi= s along the branches of hyperbola 

(1.4) 

Both hyperbolas constitute a set of branching lines L. 
Having obtained the sign of the Jacobian of Eq.(1.3), we determine the indices of leaves 

of set P. 
The plane %I=0 consists of three leaves: PI which is the part of the plane comprised be- 

tween branches of the hyperbola (1.4) with index vl=O,P,, and P,(Y,=Y~= 1) the parts lying 
outside of hyperbola (1.4). The plane 6= 3~ also consists of three leaves: P4(v6= 1) whichare 
the parts of the plane inside hyperbola (1.5), P,, and P,(v,=v,=O) parts of the plane out- 
side hyperbola (1.5). The signs of leaves P,, PB of significant motions are determined by 
the sign of remainder Is*-II,,. If I,, <I,,, then Y, = ya = I and h2; = Q, n Q,, 51, = IL, fl 1&, and 
when I,,>I,, we have v,=Y,=O and 87 = 52, ri Q,, QJ = Qz i? %- 

In the problem considered the control forces can be generated by: moment IF8 of themotor 
fitted to the inner gimbal ring and driving the gyroscope, and moment F, of the motor driving 
the outer gimbal ring. 

2. First approximation equations. Let us consider the feasibility of stabilizing 
steady motions belonging to the various leaves of set P. As in /1,2/ we shall analyzefirst 
approximation equations, for which we linearize Lagrange equations in the neighborhood of mo- 

tion qo, coo. Introducing deviations x = q - qO,n = 6) - oO, we obtain 

where L), is the i-th TOW of matrix L? of the linear part of dissipative force iJid, Ai,B,, Wi 
are rows of matrices A, B, W, and Kj* Mj, Ivj are rows of the respective matrices K, M, K of 
linear control forces. The zero subscript shows that the respective quantity is calculated 
for * = qa, 0 = oo. We assume that det D +O. 

From the point of view the structure of forces sysyem (2.1) can be considered as the 

result of imposing on the two independent subsystems /8/ 

n,oz"_t Wi&Z + DjOl'=OI Bjoq‘=O 12.2) 

of additional forces. This device enables us to obtain certain results on the basis of the 

Kelvin-Chetaev (Thomson and Tait /9/) theorems. 
Note that the first subsystem is subjected to potential and dissipative forces. Itszero 

approximation is asymptotically stable, if the stable motion wO, Q0 belongs to the leaf with 

index (Y, = 0), and is unstabl.e if "e P 0. 
Equations (2.1) enable us to solve the problem of stabilization of steady trivialmotions, 

when conditions (1.2) are satisfied and the first subsystems in (2.1) and (2.2) are the same. 
This enables us to make the following statements. 
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Statement 1. AIIY trivial stable motion that belongs to leaf P, with index Ye+=0 can- 

not be stabilized by any linear contxol forces. 

Statement 2. If a trivial stable motion belongs to a leaf with zero index, then for 
its stabilization it is sufficient that matrix -K-KT is positive definite. 

Note that the property of amenability to stabilization or nonstabilization establishedon 
the basis of the linear equations (2.1) are also retained by virtue of complete equations of 
motion. 

Example 1. Let us continue the analysis of motions of a physical pendulum. Statement 
1 enables us to establish the impossibility of stabilizing steady motions belonging to leaves 
pa*pa in the case of I,>I$, and those belonging to P, in the case of Is>Ia. For the stabili- 
zation of remaining leaves of trivial steady motions it is sufficient that F=k(w- 00) (k<O), 

Example 2. In the case of a gyroscope in universal joint we find #at no linearforces 

FW F3 can stabilize steady motions that belong to leaves P,, PI, Pp. Steady motions on leaves 

P,, P,, P, can be stabilized by, for example , using the following control: Fj= kj(Wj--jo)(kf<O), 

f = 2,3. 

3. Stabilization of significant steady motion. Let the motionmode p = go, o = o0 
belong to the leaf of significant steady motions. The problem of selecting the control forces 
structure can, also in this case, be reduced to the analysis of two independent subsystems by 
using the following method. 

Let us stipulate that system (2.1) must have the invariant manifold 

n+Hz+Gz'=O 

For this it is sufficient that system 

(3.1) 

y' = --yy, y =i??l +BHx+ BGX' (3.2) 

where y is an arbitrary matrix I is identically satisfied by virtue of Eqs.(2.1). The selec- 
tion of matrices H,G, 7 evidently uniquely determine the coefficients of matrices K,iW,N of 
control forces. 

Let us also stipulate that matrix y must be symmetric and positive definite. Themani- 
fold (3.1) is then asymptotically stable. 

The first of Eqs.(2.1) in the manifold (3.1) is a linear system of the over-all state 
under the action of total structure forces. Its dimension is, however, determined only bytbe 
number of position coordinates , which facilitates the analysis of its zero solution stability. 
The question of the investigated mode of motion is resolved on the basis of the following ob- 
vious statement. 

Statement 3. If it is possible to select such matrices Hand Gthat the subsystem 
of the first of Eqs. (2.1) in the manifold (3.1) has an asymptotically stable zero solution, 
the steady motion g = po, m = oG can be stabilized. 

Statement 3 is only a particular form of the theorems on stabilization feasibility fonn- 
ulated in /1,2/ for the general caee of gyroscopically constrained systems. The method of 
linear mechanical systems stabilization expounded in /9f can also be used for devising stabil- 
izing effects. 

The problem of devising stabilizing effects is simplified if only matrices 

G=O, H=r~-&?c~)]~ 

where r is some symmetric positive definite matrix, are used. In that case the subsystem in 
the first of Eqs.(2.1) in the manifold (3.1) is of the form 

Aili' + Diox* + @'*OX + W~O'X= 0 (3.3) 

System (3.31 differs from system (2.2) by the presence of additional potential forces 
with matrix Wo' formed of rows W$. 

If the steady motion belongs to the leaf with zero index, the asymptotic stability of 
the zero solution of system (3.3) is attained even when P-0. Note also that matrix W; is 
nonnegative. It is, therefore, possible to expect stabilization of steady motions belonging 
to certain of the P, leaves for which v,#O. The feasibility of such stabilizationis form- 
ulated more precisely by the following statement. 
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Statement 4. Let z(1),..., 5 (Ve' be the eigen vectors of matrix W,,that correspond to i:.:- 
negative eigenvalues, and mbe the dimension of the linear subspace X 

L-i- (Bo)los=O (m>2r-n) 

Then to stabilize a stable motion by the method considered here it is necessary that 
v, -<r-m and sufficient that vectors so),..., z("~' do not belong to the subspace X. 

When the conditions of Statement 4 are satisfied, it is possible to select matrix 1‘ (for 
example, in the form of a diagonal matrix) such that matrix W, + Wo’ of potential forces in 
the system of Eqs.(3.3) becomes positive definite. This ensures stability of the zero solu- 
tion of system (3.3). 

Having selected matrix I?, we calculate matrices K,M,N using formulas 

Let US list the constraints that must be satisfied by the coefficients of matrices K,,W, 
N of the control forces that solve the problem of stabilization. The first group of con- 
straints consists of positive definiteness of matrix y. The second group consists of condi- 
tions of positive definiteness of matrix W,,+Wo’. The arbitrariness of the selection of 
matrix y, evidently, gives a fairly wide freedom in the selection of matrix Ii, M. In part- 
icular, the coefficients of matrix y (respectively of matrices K,!lf) can be chosenarbitrarily 
small. 

Differences in stability conditions for subsystem (3.3) were indicated in /4,10/ in the 
case of r = 0 and r = B-’ . 

Example 1. Consider a physical pendulum with a single position coordinate. In the 
case of steady motion on leaf P, we have 

aB/?3b = (I3 - Is) sin 26 # 0 

Hence the linear subspace X degenerates into point .X =o. If I%, I,, then Ye= 0 and 
there is virtually no question of stabilizing a steady motion on leaf P, . When I,>I,, we 
have v,=l but any steady motion belonging to that leaf, can be stabilized by selecting a 
reasonably large number I?. Since 

W' = 'iaT (I3 - 1,)20z sin2 26 

condition WO f W,'>O, after appropriate transformations, assumes the form 

I'> (I3 - I,)oO" sin*6, (00) (flfga)-' 

At high angular velocities the quantity r required for stabilization is of order wt?. 
If the coefficient of inverse constraint with respect to pseudo-ignorable velocity (see (3.4)) 
and with respect to the position coordinate (K and M) can be reduced by selecting a small 1, 
the coefficient of inverse constraint with respect to position velocity (N) is of the same 
order as r. 

Example 2. A gyroscope in universal joint has, also, a single pcsition coordinate 0. 

Stabilization of steady motions belonging to leaves P;, PB is in this case also possible. When 

I,,>I,, it is then possible to set r=_ 0, while for I,,.<I~* we can limit the choice to r ~- 

kE, where k is a scalar quantity. We have 

W = (I,, - 1,,)o,2sin2 6 

TO satisfy the condition bifo km iv,‘> 0 it is sufficient to select k such that dI,">fnr-II?.. 
Unlike in the previous example, it is possible to take the same valueoftheinverseconstraint 
parameter li (and all others) for the stabilization of all significant steady motions. 

4. On stability with weak control. Insomeapplied problems it is expedient to 
analyze the effect of forces Fj with small coefficients 

Irj Z e (Kj7, /- Millr ;- NjS') 

where E is a small parameter. When c -0, the system of Eqs.(2.1) has the invariantmanifold 

w&-~+-(r,,TB)jOq=O (4.1) 

which corresponds to zero roots of the characteristic equation. Let matrix W, + Wo’ be 
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positive definite when I' = B-‘. The manifold (4.1) is asymptotically stable. We denote by 
k,(l.,,,(()) the maximum real part of nonsero roots of the characteristic equation of system 
(2.1) for e = 0. 

The following analysis is based on the evident property of linear systems whose coeffic- 
ients continuously depend on parameter 8. We separate some group of roots %(e),..., Ah(s) of 
the characteristic equation , and the corresponding to them invariant vectors ~l~(s),...,~~)(s~ 
Consider the parameter variation interval (sr, a,) where none of the separated roots becomes 
multiple (although among the group of separated roots there may be some multiple ones). Then 
the invariant manifo,ld generated by vectors #(e),... ,2(')(e) continuously depends on e for 
e ~(el, es) (although thexe may be no continuous dependence of vectors 2(1)(e),...,&(e) them- 
selves). 

The indicated property enables us to note that for 1s 1 <e, (eO is some positive quantity) 
system (2.1) has an invariant manifold of the form 

wax- G- (~TB)]Orlf~(e)S(a)rl=O (4.2) 

where S is some matrix, and as e-+0, the scalar n(e)-_,O. 
We carry out the substitution of time and variables T), by introducing 

z=e& y=Bq+xT IT&(-], 

and represent system (2.1) in the manifold (4.2) as 

dy x= KB-'--~'[~(w'B)]~}y+O(p) 
1 

(4.3) 

where the last term contains all terms that vanish when p = 0. 
The dimension of the system of Eqs.(4.3) is substantially lower than that of the input 

system and contains the small parameter p, which enables us to apply to it known methods. 
Let x,(x,#O) be the maximum real part of roots of the characteristic equationofsystem 

(4.3) with p= 0. The sign of x, obviously makes possible to judge on the stability or in- 
stability of the zero solution of system (2.1), provided the following two conditions are 
satisfied: Ip 1 is small in comparison with 1% 1 and Iex, 1 is small in comparison with 
1 h, 1. The first of these ensures that the signs of sand of the maximum real partofroots 

of the characteristic equation of system (4.3) are the same when the parameter p is fairly 
small. Because of this it is possible to ascertain the instability of the zero solution (of 
steady motion) when %,>O. 

When the second condition is satisfied, the invariant manifold (4.2) contains invariant 
vectors that correspond to roots of the characteristic equation of system (2.1) with the max- 
imum real part, when the parameter E is reasonably small. Both conditions are necessary for 
the validating the conclusion about the stability of the zero solution (stable motion) when 
x,<o. 

The statement on the impossibility of stabilizing a steady motion with fairly small para- 
meter e when &> 0 is also valid. 
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